MATH5010 Linear Analysis (2022-23): Homework 4. Deadline: 23 Oct 2022

Important Notice:

♣ The answer paper must be submitted before the deadline.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

- 1. Suppose that the Euclidean space \mathbb{R}^n is endowed with the usual norm, that is, $||x||_2 := \sqrt{\sum_{k=1}^n |x_k|^2}$ for $x = (x_1, ..., x_n) \in \mathbb{R}^n$. For each $x \in \mathbb{R}^n$, put $||x||_{\infty} := \max_{1 \le k \le n} |x_k|$. Using the definition of equivalent norms, show that the norms $|| \cdot ||_2$ and $|| \cdot ||_{\infty}$ are equivalent on \mathbb{R}^n .
- 2. Let $X := \mathbb{R}^2$ be a two dimensional real vector space and let A be the matrix $\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$. Define a mapping $T : X \to X$ by Tx = Ax for $x \in X$. Suppose that X is endowed with the $\|\cdot\|_{\infty}$ -norm, that is $\|x\|_{\infty} := \max(|x_1|, |x_2|)$ for $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in X$. Find $\|T\|$.
- 3. Recall that c_{00} denotes the finite sequence space which is equipped with the $\|\cdot\|_{\infty}$ -norm. Let $T: c_{00} \to c_{00}$ be the linear map given by

$$T(x)(k) := kx(k)$$

for k = 1, 2... and $x \in c_{00}$. Show that T is a discontinuous map.

* * * End * * *